V(t)=2t^2+t-6

Simple and best practice solution for V(t)=2t^2+t-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(t)=2t^2+t-6 equation:



(V)=2V^2+V-6
We move all terms to the left:
(V)-(2V^2+V-6)=0
We get rid of parentheses
-2V^2+V-V+6=0
We add all the numbers together, and all the variables
-2V^2+6=0
a = -2; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-2)·6
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-2}=\frac{0-4\sqrt{3}}{-4} =-\frac{4\sqrt{3}}{-4} =-\frac{\sqrt{3}}{-1} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-2}=\frac{0+4\sqrt{3}}{-4} =\frac{4\sqrt{3}}{-4} =\frac{\sqrt{3}}{-1} $

See similar equations:

| x^2+2/3x=7/36 | | 9s+2=45 | | 27-8n=7+5(2-2n) | | -7(v+6)=7v-14 | | 13y+19=15y+5. | | f/5-22=-26 | | -3(1-x)=12 | | -5(n-4)=26-7n | | g/4+13=25 | | 3x=5x-60 | | 2x+11=7x-9 | | (x+16)^2-6=0 | | (9x-5)=(4x+29) | | 16x*2-81=0 | | .03y=2.1 | | (4x-8)=(5x-19) | | 11+3r=r-5 | | 0.25x+7=4(x-2) | | 3v-12=48 | | (5t-6)^2=13 | | -4p+24=12 | | (4x)=(7x-2) | | -2=x/10+1 | | u/(-4)-14=0 | | 69=4y=9 | | 9x^2+18+8=0 | | 3t+4=-19 | | -4x+17=3x-24 | | 2v-15=13 | | -4x+17x=3x-24 | | 3.1+u/7=-8.1 | | -26=-0.4k |

Equations solver categories